Scalable Detection of Sentiment-Based Contradictions

نویسندگان

  • Mikalai Tsytsarau
  • Themis Palpanas
  • Kerstin Denecke
چکیده

The analysis of user opinions expressed on the Web is becoming increasingly relevant to a variety of applications. It allows us to track the evolution of opinions or discussions in the blogosphere, or perform product surveys. The aggregation of sentiments and analysis of contradictions is another important application, which becomes effective since we are able to capture the diversity in sentiments on different topics with more precision and on a large scale. Though, there is still a need for a scalable way of sentiment aggregation with respect to the time dimension, which preserves enough information to capture contradictions. In this paper, we are focusing on the problem of finding sentimentbased contradictions at a large scale. First, we define two types of contradictions, depending on the distributions of opposite sentiments over time. Second, we introduce a novel measure of contradiction based on the mean value and the variance of sentiments among different texts. Third, we propose a scalable method for identifying both types of contradictions at different time scales. We evaluate the performance of our method using synthetic and realworld datasets, as well as a user-study. The experiments demonstrate the effectiveness of the proposed method in capturing contradictions in a scalable manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Sentiment-Based Contradictions

Contradiction Analysis is a relatively new multidisciplinary and complex area with the main goal of identifying contradictory pieces of text. It can be addressed from the perspectives of different research areas such as Natural Language Processing, Opinion Mining, Information Retrieval, and Information Extraction. This paper focuses on the problem of detecting sentiment-based contradictions whi...

متن کامل

Detecting Contrastive Sentences for Sentiment Analysis

Contradiction Analysis is a relatively new multidisciplinary and complex area with the main goal of identifying contradictory pieces of text. It can be addressed from the perspectives of different research areas such as Natural Language Processing, Opinion Mining, Information Retrieval, and Information Extraction. This work focuses on the problem of detecting sentiment-based contradictions whic...

متن کامل

Scalable Discovery of Contradicting Opinions in Weblogs

Weblogs are a popular means of information communication, where people discuss a variety of topics, and often times also express their opinions on these topics. In this work, we address the problem of analyzing the evolution of community opinions across time, as these are represented in the weblogs. In particular, we are interested in identifying topics and time windows, for which contradictory...

متن کامل

Détection de contradiction dans les commentaires

Analysis of opinions (reviews) generated by users becomes increasingly exploited by a variety of applications. It allows to follow the evolution of the opinions or to carry out investigations on products. The detection of contradictory opinions about a Web resource (e.g., courses, movies, products, etc.) is an important task to evaluate the latter. In this paper, we focus on the problem of dete...

متن کامل

Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms

Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011